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Abstract— ROSHlight is a lean, open-source autopilot ecosys-
tem for unmanned aerial vehicles (UAVs). Designed by re-
searchers for researchers, it is built to lower the barrier to entry
to UAV research and accelerate the transition from simulation
to hardware experiments by maintaining a lean (not full-
featured), well-documented, and modular codebase. This pub-
lication builds on previous treatments and describes significant
additions to the architecture that improve the modularity and
usability of ROSflight, including the transition from ROS 1 to
ROS 2, supported hardware, low-level actuator mixing, and the
simulation environment. We believe that these changes improve
the usability of ROSflight and enable ROSflight to accelerate
research in areas like advanced-air mobility. Hardware results
are provided, showing that ROSflight is able to control a
multirotor over a serial connection at 400 Hz while closing
all control loops on the companion computer.

I. INTRODUCTION

In recent years, interest in unmanned aerial vehicles
(UAVs) has increased significantly. Technological advances
have enabled numerous applications of UAVs, including
package delivery, photography, search-and-rescue, firefight-
ing, as well as military applications.

Advanced air mobility (AAM), a category broadly re-
ferring to increasing autonomy in urban areas for civilian
use, is also currently an area of high interest. AAM aircraft
often take the form of eVTOL aircraft, and specialized
autopilots, algorithms, and hardware are needed to effectively
conduct research in this field. Because of this, researchers
often need access to the inner workings of an autopilot
(e.g., the state estimator or inner loop controller), which
makes commercial closed-source autopilots or many open-
source autopilots difficult to use. Additionally, simulation
and hardware experiments are critical in AAM research to
ensure proposed systems and methodologies are safe and
function as intended.

ROSAlight is a lean, open-source autopilot for UAVs built
for research. Because it is designed to be lean, ROSflight
is not full-featured and does not boast many of the state-
of-the-art functions available in other popular open-source
autopilots [1], [2]. Instead, ROSflight offers only the basic
functionality needed to support UAV research, prioritizing
understandability. While this places more responsibility on
the end user to develop application-specific code, we believe
a lean architecture reduces the black-box nature of the
autopilot, thus reducing the total effort to implement a user’s
application code. Additionally, the ROSflight project has a
strong emphasis on clear code and complete documentation,
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which improves accessibility and lowers the barrier to entry
for researchers. Documentation can be found on the project
website, rosflight.org,

Built on the robot operating system (ROS 2) [3], ROSflight
is designed with a modular architecture to fit the needs of
varying airframes and applications. ROSflight is designed
to enable true software in the loop (SIL) simulation. When
using ROSflight, the same code that runs the autopilot in sim-
ulation also flies the vehicle in hardware, with no changes—
significantly enhancing the transition from simulation to
hardware experiments.

ROSflight has received detailed treatment in [4], [5].
We rely on [5] for an excellent description of the overall
architecture and design goals of the ROSflight project. The
contributions of this work are to describe significant improve-
ments to ROSflight in the release of ROSflight 2.0 including

o the transition from ROS 1 to ROS 2,

o improved modularity and accuracy in the actuator mix-

ing,

o new supported hardware for faster and more reliable

operation,

« a restructured and modular simulation environment to

support diverse simulation needs, and

o flight test results demonstrating these improvements in

hardware.

Due to these advancements, ROSflight 2.0 improves the
modularity and usability of the software, enabling ROSflight
to accelerate research in areas like advanced air mobility.

The rest of the paper is organized as follows: Section
describes work similar to ROSflight. A brief overview
of ROSflight is described in Section Improvements to
the ROSflight architecture are described in detail in Section
and supported hardware and improvements to the sim-
ulation environment are discussed in Section [Vl Hardware
results demonstrating these improvements to ROSflight are
described in Section [VI and we conclude in Section [VIII

II. RELATED WORK

Advances in UAV technology have given rise to many
excellent and mature open-source autopilots like PX4 [1]
and ArduPilot [2]. Both of these autopilots offer impressive
feature sets, state-of-the-art performance, extensive commu-
nity support and adoption, and plug-and-play functionality.
Additionally, both projects have good support for the Robot
Operating System (ROS 2), thus improving integration of
external code libraries into an autopilot [6]. However, the
large code bases, complexity, and steep learning curve of
these autopilots decrease understandability, which increases
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Fig. 1: Overview of the ROSflight archtecture.

the time and effort required to integrate external code and
conduct simulation and hardware tests. ROSflight is pri-
marily designed to be understandable with clean, lean code
and complete documentation. Additionally, ROSflight moves
most of the autopilot stack to a Linux-based companion
computer which has more compute power and is easier to
develop on than an embedded microcontroller. ROSflight also
emphasizes true software-in-the-loop simulation [5]. Other
open-source autopilots [7], [8] are less mature, have limited
flexibility and ROS 2 support, or are designed primarily
for hobbyist use. ROSflight is built around ROS 2 and is
explicitly designed to fill researchers’ needs.

III. ROSFLIGHT OVERVIEW

An overview of the ROSflight architecture is shown in
Figure [I] At a high level, it is comprised of two onboard
systems: a low-level embedded microcontroller (called the
flight control unit) and a Linux-based companion computer
(also called the flight computer).

Flight control unit (FCU): The FCU interfaces directly
with the physical aircraft and communicates with a Linux
companion computer using a high-speed UART or USB CDC
ACM serial interface. This FCU runs the ROSflight firmware,
and is responsible for collecting sensor measurements (a sen-
sor aggregator), controlling actuators, streaming information
to the companion computer, and monitoring the state of the
software (e.g. armed or disarmed). The FCU also receives
radio control (RC) commands directly from a safety pilot
via an RC receiver. An estimator and controller are present
on the firmware to manage the fast inner loops of the control
architecture (e.g., angle and rate loops for a multirotor). Note
that while the vehicle is fully controllable by the safety
pilot without the companion computer, the majority of the
autonomy stack is found on the companion computer, so only
limited autonomy is available without it.

Companion computer: The companion computer, running
Linux, receives sensor measurements and sends actuator
commands to the FCU over the serial interface. The serial
protocol is abstracted in such a way that different serial
protocols can be used, and MAVlink is used as the default
serial communication protocol. Most of the autonomy stack,

including high-level state estimation and control algorithms,
resides on this computer. All modules on the companion
computer are written as ROS 2 nodes, enhancing the modu-
larity of the system. When connected on the same network
using standard WiFi or another network, the companion
computer can communicate with other computers like a
ground-station laptop so users can easily monitor the system.

The subject of this work is to describe the significant
improvements to both the hardware and software associated
with the FCU. Examples of out-of-the-box high-level auton-
omy stacks using ROSflight are available with ROSplaneE]
[9] and ROScopterf}

IV. DESIGN UPDATES
A. ROS I to ROS 2

Previous versions of ROSflight used ROS 1, which is
no longer supported by the maintainers of ROS. ROSflight
now uses ROS 2, and primarily supports long-term support
(LTS) versions of ROS 2, which are ROS 2 Humble with
Ubuntu 22.04 and ROS 2 Jazzy with Ubuntu 24.04. ROS 2
offers several improvements over the previous ROS 1 system,
making it more robust and reliable [3]. The core ROSflight
firmware on the embedded microcontroller does not use ROS
(e.g. micro-ROS [10]), and instead communicates with the
ROS 2-based I/O node (called ROSflightlO) on the com-
panion computer over serial using MAVIink. The ROSflight
simulation is built around ROS 2, and exploits this to improve
modularity as will be discussed in Section

B. Mixer

In ROSflight 2.0, the mixer has been restructured to offer
greater flexibility and control. The mixer is a component in
the software responsible for taking in a controller command
and transforming it to actuator outputs. This process is
called actuator mixing or force allocation. Given a desired
command, the mixer allocates actuator effort to achieve it as
closely as possible. The inputs to the mixer are the output
of a controller, as shown in the block diagram in Figure [2]
Similar to [11], we formulate a linear mapping between the
inputs and outputs using a mixing matrix, which takes the
form in Equation (IJ.

= Mtu, (1)

where 7 € R™ is a vector of commands that is eventually
written to the actuators (after any necessary scaling and
saturation operations), M € R™*" is the mixing matrix,
u € R™ is the vector of controller commands, and (-)' is the
Moore-Penrose pseudoinverse. In ROSflight, u is composed
of either RC safety pilot commands or offboard commands
from the companion computer (offboard with respect to the
FCU), as described in [5].

In ROSflight, we let m = 6 and n = 10, meaning there
are ten output channels corresponding to hardware outputs
(PWM or DShot) on the FCU, and six desired commands to
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Fig. 2: Diagram of how the ROSflight mixer interfaces with other
ROSflight modules. The mixer takes in either the output of a
controller or setpoints that bypass the controller, called pass-through
commands, and outputs actuator signals. The setpoints are created
by the onboard computer or the RC safety pilot.

the mixer, requiring 60 values. Additionally, the ROSflight
mixer defines a PWM rate and an output type (motor, servo,
GPIO, or auxiliary) for each output channel, yielding an
additional 20 values. Note that the actual number of PWM
output pins is limited by the FCU hardware. If a hardware
board has more than ten PWM output pins, the remainder
are automatically defined to be auxiliary outputs, which are
simply PWM outputs that do not pass through the mixer.
As in [11], u is typically a vector of the desired forces,
F, and torques, 7, that are to be applied to the physical
system. Thus, in ROSflight, we let u = [FT, TT]T € RS as
the default interpretation of the mixing equations. However,
the actual meaning of the mixer input vector w is closely tied
with the elements of the mixer matrix. Thus, in the following
descriptions, we do not constrain the input vector u to be
a vector of forces and torques, but instead a vector of six
generic control inputs, all of which may not be used in a
given setting. For example, a quadrotor mixer may take in
desired forces and torques (F}, @y, Qy, Q)-), corresponding
to four of the six degrees of freedom of the physical
aircraft, and return individual motor commands, while a V-
tail fixed-wing mixer may take in desired control surface
commands (d,, d., d¢, 9,-) and return actual servo commands.
An example of Equation (I) for a V-tail fixed-wing mixer is
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where u = [0¢,65,0¢,0¢,01x2]7 is the input vector con-

taining the desired aileron, elevator, rudder, and throttle
commands, respectively, and 7 = [dq, 87, O, 0¢, 01567 s
the output vector containing the commands to the servos
controlling the ailerons, left ruddervator, right ruddervator,
and throttle, respectively. Since in this example the remaining
two control inputs in u are not used, they are zero. Note
that the signs of the coefficients in the mixing matrix are

dependent on the orientation of the control-surface servos
on the aircraft.

Since the values of the elements of a mixing matrix are
highly dependent on the physical airframe and the output of
the controller, the ROSflight mixer has been re-designed to
offer additional flexibility. Key features allow users to

« use predefined mixers for commonly used aircraft,

o define a custom mixer loaded at runtime,

« specify a separate mixer for the RC safety pilot and the

onboard computer, and

¢ post-process the output vector 7 with empirical motor

parameters for a higher-fidelity model.

1) Predefined Mixers: Some predefined, hard-coded mix-
ers are included for convenience in the implementation of the
ROSflight firmware. These mixers can be selected at runtime
via parameters, and are available for standard airframes,
including quadorotor, hexarotor, standard fixed-wing, or V-
tail fixed-wing airframes. A full list of predefined mixers is
available on rosflight.org. Each mixer definition defines the
type of each output channel (e.g., motor, servo, GPIO, or
auxiliary), the PWM rate assigned to each channel, and the
values of either M or M. See Appendix A for the derivation
and assumptions of the predefined mixers.

2) Custom Mixer: Since the mixer is intimately tied to the
physical geometry of the aircraft, users may need mixers not
included in the predefined mixers hard-coded in ROSflight.
Thus, ROSflight includes the ability for users to load their
own custom mixing matrix values via parameters. A custom
mixer must include both the 60 mixing matrix parameters
as well as the 20 header parameters. The names of these
parameters and default values can be found on rosflight.org.

A custom mixer grants additional flexibility to ROSflight,
allowing users to employ a higher fidelity model than the
predefined mixers or to design mixers for nonstandard air-
craft (e.g., eVTOL) without having to reflash the firmware.

3) Pass-through Mixer: ROSflight can be operated in
pass-through mode, where offboard commands bypass the
firmware controller and progress directly to the mixer, as
shown in Figure (2). The high-speed serial connection en-
ables sending these pass-through offboard commands at a
high rate, thus giving direct access to individual motors at
a high rate. Such a configuration enables low-level control
of a vehicle from the companion computer, thus improving
flexibility and lowering the barrier to entry since all control
loops can be closed on the Linux-based companion computer.
Use cases might include sending direct actuator commands
for individual motor control during transition of an eVTOL,
or for sending actuator commands from the output of a
neural network controller [12], [13]. Additionally, operating
ROSAlight in pass-through mode enables users to filter the
inputs to the mixer. This could be used to simulate hardware
failures [14], cyber attacks [15], or other physical failures
simply by filtering the companion computer’s output before
sending to the mixer.

4) Primary and Secondary Mixers: The addition of a
custom mixer can raise issues for a safety pilot. For example,
a quadrotor with the identity matrix as the mixing matrix
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Fig. 3: Diagram of how the ROSflight mixer, M, is constructed from
the primary and secondary mixers based on which RC overrides
are active. Note that the header information (PWM rate and output
type) for M is always constructed from the primary mixer’s header
information.

would allow the companion computer to send actuator com-
mands directly to each of the four motors. This scenario,
however, would make it impossible for a safety pilot to fly
the quadrotor, because the rate and angle controllers used by
the RC pilot output forces and torques, not direct actuator
commands, as shown in Figure [2

To address this safety concern, ROSflight supports loading
two separate mixers: the primary mixer and the secondary
mixer. The primary mixer is used by the RC safety pilot
and thus should always be defined such that the RC pilot
can control the vehicle, while the secondary mixer is used
by the companion computer. When the companion computer
has control over the vehicle, ROSflight uses the secondary
mixer; otherwise, it uses the primary mixer.

When conducting flight tests with a companion computer,
it can be helpful to isolate certain channels of the offboard
command to incrementally test companion computer control.
To accommodate this, the RC pilot in ROSflight has two
types of control over the vehicle: attitude override and
throttle override. When RC attitude override is enabled, the
RC pilot has control over the ); portions of the command
vector u. When RC throttle override is enabled, the RC pilot
has control over the F; portions of the command vector.
When either override is enabled, the mixer that transforms
the control input vector u = [Fy, Fy, F,, Qz, Qy, Q] to
motor outputs 7 is a mixture of the primary and secondary
mixers, as shown in Figure (3). This allows the RC pilot to
control either the throttle or the attitude while the companion
computer controls the other. Note that this requires that the
mixing matrices and the control inputs are designed so that
this split may occur. In other words, if the mixer output
does not have meaning when the torque commands (; are
separated from the force commands Fj;, then attempting to
use attitude and throttle override independently of each other
may cause undesirable behavior. If that is the case, setting the
attitude and throttle override RC channels to the same value
(thus activating both or neither) would lead to the correct
interaction between mixers.

Both the primary mixer and the secondary mixer should
be selected by setting the appropriate parameter through the
ROSflight parameter interface. If the secondary mixer is left

unspecified, it will default to the same value as the primary
mixer. This is useful for users who do not need a distinction
between the primary and secondary mixers.

5) Empirical Motor Parameters: As described in Ap-
pendix , using the motor and propeller parameters can
increase the fidelity of the mixing matrix. In ROSflight, the
USE_MOTOR_PARAM parameter tells the firmware whether or
not the mixer directly outputs motor setpoints, d; ;, or desired
angular speeds, €2;. If the mixer outputs desired angular
speeds, then ROSflight converts these values to desired motor
setpoints before they are sent to the motors and ESCs.

V. INTEGRATION UPDATES
A. Hardware Support

ROSAlight supports FCU hardware configurations having
at a minimum a six-axis inertial measurement unit (IMU
with three-axis accelerometer + three-axis gyroscope) for
local state estimation and control, and a radio control (RC)
receiver for some control inputs. Here, we employ FCUs
that additionally include three-axis magnetometer, barometer,
differential pressure, and GPS sensors; and a telemetry data
link. Measurement of this additional sensor data via the FCU
ensures consistent and accurate relative timestamps for use
by the companion computer. Figure 4| illustrates the inter-
connection of components, including the FCU, companion
computer, telemetry, and ground control elements.

Two hardware configurations are currently supported and
demonstrated (Table [). Configuration 1 is comprised of
commercial off the shelf (COTS) components from 3DR
and Nvidia, and is therefore more accessible. Configuration
2, provided by AeroVironment, Inc. (AV) benefits from a
more tightly integrated hardware package, as well as higher
performance IMU and differential pressure sensors. Both
configurations share compatible STM32H7 microcontrollers
allowing significant software commonality. RC and telemetry
data links used in hardware experiments are listed in Table
Note that other RC and telemetry data links are also
supported.

To support different hardware (e.g., GPS, magnetometer,
other sensor boards, or a different FCU) and to improve
adaptability to different hardware configurations, ROSflight
is designed so that the core firmware functionality is ab-
stracted from the hardware implementation, called the hard-
ware abstraction layer (HAL). The HAL for a given hardware
configuration is created by inheriting from a base class that
defines all the functions specifically related to hardware
required by the ROSflight firmware. For example, to support
a different GPS receiver, a user would create a driver to inter-
face with the new receiver and then interface with ROSflight
using the associated class member functions defined by the
HAL. More generally, the entire board can be replaced as
long as it employs the board HAL.

B. Software-in-the-Loop Simulation

A simulator is an essential component in robotics re-
search that allows for rapid development before deploying on
hardware. In many cases, the transition from simulation to
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Fig. 4: Hardware elements
(a) FCU configuration 1
Component | Function

3DR Pixracer Pro
3DR M10034C
3DR M10121A
3DR MS4525DO
Nvidia Jetson Orin
Nano 8GB devel-
oper kit OR Rasp-
berry Pi 5 8GB

FCU with IMU and barometer
GPS and magnetometer
Power board

Differential pressure
Companion computer

(b) FCU configuration 2

Component | Function

AV Varmint FCU with integrated IMU, barometer,
magnetometer, differential pressure,
GPS, power, and Nvidia Jetson Orin
NX 16GB companion computer

1575A-L GPS L1 active antenna

TABLE I: Controller configurations

hardware experiments can require extensive modifications or
adjustments to the software used for the experiments due to
hardware or other real-world constraints. ROSflight seeks to
minimize the effort to transition from simulation to hardware
environments by mirroring the hardware environment as
closely as possible in simulation. This enables the same
software that runs in simulation (i.e., the ROSflight firmware
and an associated autonomy stack) to also control the vehicle
in hardware, with no changes.

Many simulation environments have been developed to
aid UAV research, including general-purpose simulators and
application-specific simulators [16]. Each simulator has dif-
ferent attributes that make it more or less suited to a given
research problem. For example, research that uses computer
vision as an essential component of the autonomy stack likely
needs a photorealistic simulator, while research focusing on
multi-agent coordination and localization may only need a
headless environment to do Monte-Carlo experiments.

The ROSflight simulation package is flexible and modular
so that users can customize it to their needs by supporting
their own simulator or by including custom functionality.
ROSAlight natively supports three simulators out of the box:
HoloOcean [17], a photorealistic visualizer built on Unreal

Component

TBS Crossfire 8Ch Diversity Rx

TBS Crossfire TX

Doodle Labs 5GHz Embedded Mesh Rider,
RM-5800-2]-XM

Doodle Labs 5SGHz Smart Radio, RM-5800-
2J-XE

| Function

RC receiver
RC transmitter
Air telemetry

Ground telemetry

TABLE II: Remote Control and Telemetry

Engine 5, Gazebo [18], a popular open-source simulator for
robotics, and a custom lightweight simulator that uses ROS
2 RViz for visualization.

The ROSflight simulation is split into a series of modules
which are implemented as separate ROS 2 nodes and are
described in Table[[Tl} This modularity enables users to define
which modules are loaded at runtime. Since different visual-
izers come with different capabilities, this allows visualizers
to be exchanged with minimal effort. For example, Gazebo
performs dynamic propagation as part of the visualization
engine, while the lightweight RViz visualizer only displays
the 3D motion of the aircraft. Thus, when using Gazebo with
ROSAlight, the dynamics module is not launched while the
rest of the ROSflight simulation modules remain unchanged.

Module Name

Description

Time Manager Manages simulation time

SIL Board Instantiation of firmware and simulated
FCU board

RC Simulates RC safety pilot connection

Sensors Creates simulated sensor measurements

Forces and Moments Computes aerodynamic forces and mo-

ments

Dynamics Handles dynamic integration, and man-
ages truth and environment state
Visualizer Plots the vehicle in the simulated environ-

ment

TABLE III: Simulation Module Descriptions

The separation of responsibilities into modules also en-
ables easy customization of each module. For example,
eVTOL AAM aircraft are often quad-plane or tilt-rotor type
vehicles and, as such, have nonstandard aerodynamic and
propulsion models. The responsibility of the forces and mo-
ments module in ROSflight is to compute the aerodynamic
and propulsive forces and moments from the input actuator
commands. Users wishing to use a different aerodynamic
model need only to replace the ROSflight forces and mo-
ments module, while the rest of the simulation environment
remains unchanged. Sensors can also be added and cus-
tomized with minimal effort. The sensors node is responsible
for creating simulated sensor measurements based off of
the true state of the vehicle, and includes an IMU, GNSS,
barometer, magnetometer, sonar, and differential pressure
sensor by default. To add a new sensor, one simply needs to
create a ROS 2 publisher that generates the desired sensor
data at a given rate.

Each module in the ROSflight simulation package is
defined by an interface class. This interface class defines



Config. ‘ Ave (ms) Max (ms) Min (ms)
1 1.712 84.103 0.146
2 0.416 2.334 0.174

TABLE IV: Bench test of RTT and publishing rate for both
hardware configurations. The companion computer published ROS
2 offboard commands at 400 Hz.

the ROS 2 interfaces (e.g., publishers, subscribers, etc.)
that a module has, and defines virtual functions that must
be implemented by derived classes. As long as a node
inherits from the interface class and implements the required
functionality, that node will interact with the rest of the
ROSflight simulation environment. Thus, other simulators
can easily be supported by writing a ROS 2 wrapper around
the simulator’s API—as long as the new wrapper has the
same interfaces as the interface class, the new simulator will
interact properly with the rest of the ROSflight simulation.

VI. HARDWARE DEMONSTRATIONS

Hardware experiments were performed to validate the
improvements made to ROSflight 2.0. In the first, we mea-
sure the approximate serial delays from sending offboard
commands to ROSflight from the companion computer. In
the second, we demonstrate ROSflight in pass-through mode
controlling a multirotor at 400 Hz.

A. Serial Delay

To measure the approximate serial delay, we modified
ROSAlight firmware to send all received offboard commands
back to the companion computer. The companion computer
first packed an offboard command message, marked the
timestamp, and sent it to ROSflight firmware. The firmware
parsed the message as part of its normal routine and imme-
diately sent it back. Thus, each offboard command was sent
twice across the serial connection. The companion computer
received the message and computed the round-trip time
(RTT). Note that the ROSflight firmware continued to run
all of its normal operations during this experiment, including
collecting, packing, and sending sensor data, responding
to heartbeat requests, filling parameter requests, etc. This
means that some variability and delay is included in the
RTT measurement, as well as the time required for the
normal operation of ROSflight. Data was collected for 45
seconds, and the average, maximum, and minimum RTT
values were recorded. Table shows RTT statistics for
when the companion computer sends offboard commands
at 400 Hz. A Rasberry Pi 5 was used as the companion
computer for all configuration 1 tests.

Table [V| shows RTT statistics for when the companion
computer sent offboard commands as fast as possible. To
do this, ROS 2 commands were published at a configurable
rate, which was increased until the companion computer was
unable publish ROS 2 messages fast enough. The maximum
rate for both configurations was above 1100 Hz. The size of
the offboard command message is 24 bytes, meaning that the
serial connection was able to send > 52800 bytes per second

Average received
command rate (Hz)

1140
1360

Config. ‘ Ave (ms) Max (ms) Min (ms)
1 ‘ 1.024 56.921 0.154

2 0.385 3.095 0.166

TABLE V: Bench test of RTT and publishing rate for both hardware
configurations. The companion computer published commands over
the ROS 2 network as fast as possible.
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Fig. 5: Recorded RTT for offboard commands published at 400 Hz
for both hardware configurations.

of offboard command information under normal operation of
ROSflight.

Figure [5] shows a histogram of the recorded RTT values
for the data presented in Table with commands being
sent at 400 Hz. This shows that the maximum value of
56.921 ms reported in Table for configuration 1 is an
outlier. Configuration 2 demonstrated significantly superior
RTT values over configuration 1. Note that configuration
2 has an integrated design, but configuration 1 relies on a
physical USB wire for the serial connection.

B. ROSflight in Pass-through

A flight test of ROSflight flying a multirotor in pass-
through mode was conducted. For this experiment, config-
uration 2 was used on a Holybro x650 quadrotor frame. A
custom mixer was computed using the proposed methods.
A ROS 2 node containing a PID-based angle controller
was implemented on the companion computer, which out-
put forces and torques. These force and torque offboard
commands were published over the ROS 2 network to the
ROSflightIO node at 400 Hz, which forwarded them to
ROSflight over the serial connection. Since ROSflight was
operating in pass-through mode, these offboard commands
did not pass through either of ROSflight’s controllers, but
instead progressed directly to the mixer. This operation
is equivalent to sending direct motor commands from the
companion computer to ROSflight over the serial connection.

The system’s response to a triangle-wave roll command
is shown in Figure [6] demonstrating that the companion
computer was able to control the multirotor over a serial
connection at 400 Hz with all control loops on the companion
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Fig. 6: Multirotor response in hardware to roll triangle-wave set-
points with the onboard computer sending forces and torques to the
ROSflight mixer in pass-through mode, under mild wind conditions.
Configuration 2 was used for this experiment.

computer. We emphasize that the offboard commands were
sent directly to the ROSflight mixer, bypassing all control
loops on the FCU.

VII. SUMMARY

In this work we present significant advancements to
ROSAlight that improve the usability and modularity of the
system. These advancements include the transition from
ROS 1 to ROS 2, customizable actuator mixing, new sup-
ported hardware, and a more modular simulation environ-
ment. These improvements enable ROSflight to accelerate
research in areas like advanced air mobility and UAVs. We
demonstrated these new improvements in hardware, using
ROSAlight to control a multirotor at 400 Hz in pass-through
mode, meaning all control loops were closed on the Linux-
based companion computer. Approximate round-trip time
delays in the serial connection were presented for both of
the supported hardware configurations. Because ROSflight
moves most of the higher-level autonomy functions to the
companion computer, the ability to operate ROSflight in
pass-through mode enables faster development and access
to greater compute resources. ROSflight is documented in
greater detail on the project website, [rosflight.org, where
users can contribute or ask questions.

APPENDIX

This appendix contains the derivation of the general-
form and predefined mixer equations for standard multirotor
vehicles used in ROSflight. Also note that this derivation
assumes that all outputs are motor outputs, not servo outputs.
The fixed-wing mixer derivation is not included here, but
the mixer equations for a general aircraft can be derived by
following a similar procedure.

A. General Form

As defined in [11], the thrust and torque generated by a
motor and propeller in vector form are

OT 92 2
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where é; is the unit vector pointed in the direction of the
axis of rotation of the motor, Cr and Cg are the thrust and
torque coefficients associated with the propeller (assumed to
be constant), p is the air density, D is the propeller diameter,
7 is the vector pointing from the aircraft center of mass to the
motor’s axis of rotation, d; € {—1,1} encodes the direction
of rotation of a propeller, and €2; is the angular velocity of
the propeller and motor.

We wish to rewrite Equations (2) and (3) using Equation
@) to derive the mixing matrix M. Then, the desired forces
and torques relate to the desired angular velocities squared
by the mixing matrix M according to
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where ﬁd and de are the desired thrust and torque, M; is the
ith column of M, and F; and Ql are the thrust and torque
produced by the ith motor.

The i column of M is then given by

F; 2 pD* & 2
{QJ M= Cr'pm |7 oy + Calisg, |

M;

This is a general form, so it is valid for any motor config-
uration, and the desired angular speeds can be computed by
left-multiplying both sides by M, where (-)' is the Moore-
Penrose pseudoinverse.

If we know the motor parameters, we can compute the
desired input voltage based on the desired angular velocities.
From [11], we have

D5
Qp = 5920, )

Qm = Kq E(Mn_K\/Qi_iO , &)
where @), is the torque generated by the propeller due to air
resistance, @), is the torque generated by the motor, K is
the motor torque constant, R is the resistance of the motor,
Ky is the back-EMF voltage constant, and 7 is the no-load
current.

Setting Q.
yields

= @) (as is true under steady-state conditions)

RCq pD°
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Vin =
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The throttle setting, d;; € [0, 1] can then be calculated using
Vin = d¢,;Vmax. This throttle setting is the PWM setting that
the mixer writes to the motors, assuming that output voltage
is scaled linearly to the PWM duty-cycle setting.

B. Simplifications

The general form of the mixing matrix described above
requires knowledge of the motor parameters of the system.
Some simplifications can be made to generate mixing matri-
ces that do not depend on the motor and propeller parameters.
This results in a more intuitive and simple mixing matrix, but
requires different controller gains on the firmware controller
to achieve the same performance.

Assumption 1: All motors and propellers have the same
thrust and torque coefficients.

Assumption 2: é; = —k = [0 0 —1] in body-fixed
north-east-down (NED) frame, meaning that the motors are
all oriented in the —z direction (i.e., thrusting straight up).

Then,

]T
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where 6 is the angle from the positive body-fixed x-axis, as
in [11].

Assumption 3: Each desired input value is computed inde-
pendently (i.e., separate gains in a controller) than the other
input values, and ||7]| is constant for all motors.

Then, the constant terms in (7) can be factored out and
subsumed into the controller gains (and thus the desired
inputs), leading to
[g} =[0 0 —1 —sinf cosf di}TQ%

i
5
Assumption 4: V};, ~ %Qf, meaning that the squared
term in (6) dominates.
The constants in [6] can be subsumed as above. Further-
more, since Viy = 0t ; Vinax We have
T; .
[Q}} =[0 0 1 —sinf cosf di]Tém. (8)

K3

Equation (8) shows the ith column of a simplified M,
where the rows correspond to geometric properties associated
with the given airframe. The assumptions made in the
derivation of this equation limit the accuracy of this mixer
model, but allow for an easy and intuitive understanding
of the mixing matrix. The hardcoded mixing matrices (for
multirotors) in ROSflight follow this form, allowing users to
easily determine the mixing matrix and its limitations without
knowledge of the motor parameters of the system.
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